

SSC-JE

STAFF SELECTION COMMISSION

CIVIL ENGINEERING

STUDY MATERIAL

RCC DESIGNS

28-B/7, Jia Sarai, Near IIT, HauzKhas, New Delhi-110016. Ph. 011-26514888. <u>www.engineersinstitute.com</u> © 2017 ENGINEERS INSTITUTE OF INDIA[®] .All Rights Reserved <u>www.sscje.com</u>

SSC-JE CIVIL ENGINEERING

RCC DESIGNS

Syllabus

RCC Design: RCC beams-flexural strength, shear strength, bond strength, design of singly reinforced and doubly reinforced beams, cantilever beams. T-beams, lintels. One way and two way slabs, isolated footings. Reinforced brick works, columns, staircases, retaining walls, water tanks (RCC design questions may be based on both Limit State and Working Stress methods)

CONTENT

1.	Introduction	03-17
2.	Working stress method-Design of Beam and Slabs	18-51
3.	WSM-Design of columns	52-59
4.	Limit State Method-Design of Beam and Slab	60-78
5.	Limit state of collapse in shear, bond and Torsion	79-89
6.	Limit state Method-Design of Columns	90-99
7.	Design of Footings	100-108
8.	Pre-stressed concrete Design	109-130

SSC-JE CIVIL ENGINEERING

1 CHAPTER	INTRODUCTION
Basic Code for Design:	
IS 456: 2000 - Plain and rein	forced concrete - code of practice (IV th revision)
IS 875 (Part I - 5): 1987 : C	ode of practice for design loads (other than earthquake) for buildings and
structures (2nd revision)	
Part 1 : Dead loads	
Part 2 : Imposed (lives) loads	
Part 3 : Wind loads	
Part 4 : Snow loads	
Part 5 : Special loads and loads	d combinations
IS1893 : 2002 - Criteria for e	arthquake resistant design of structures (4th revision)
SP 16 : 1980 - Design aids(for SP 34 : 1987 - Handbook on SP 23 : 1982 - Design of con	or reinforced concrete) to IS 456 ; 1978 concrete reinforcement and detailing crete mixes
IS 13920 : 1993 - Ductile det 1. Co	ailing of reinforced concrete structures subjected to seismic forces. R.C.C. Structuree Image: structure in the seismic force in the

1. Concrete :

Mixture of cement, sand (fine aggregate), coarse aggregate and water.

Main characteristics of concrete:

- Durability under hostile environment.
- Can be mound into variety of shapes
- Relative economy and easy availability
- Compression bearing capacity
- Shows versatility
- 2. Cement: Various types of cement and tests on cements are dealt in detail in "Building materials"
 - > Aggregate : Fine aggregate <4.75 mm. ; e.g. sand

Coarse aggregate > 4.75 mm.; e.g - Gravel and crushed rock

> Generally, a maximum nominal size of 20mm is found to be satisfactory in RC structure elements.

(i) <u>Exposure conditions of concrete:</u>

Table: Exposure conditions and requirements for RC work with normal aggregate al size)

(20	mm	nominal	5

Exposure e	Exposure e Description		Min. cover	
Category			(mm)	
Mild	Protected against weather or aggressive	M 20	20*	
	conditions, except if located in coastal area			
		1605	20	
Moderate	Sheltered from severe rain or freezing whilst	M 25	30	
	wet, or Exposed to condensation and rain, or			
	Continuously under water, or In contact with			
	or buried under non-aggressive soil or ground			
	water, or Sheltered from saturated 'salt air' in			
	coastal area			
Severe	Exposed to severe rain, alternate wetting and	M 30	45**	
	drying or occasional freezing whilst wet or			
	severe condensation, or Completely immersed			
	in sea water, or Exposed to coastal			
	environment			
Very Severe	Exposed to sea water spray, corrosive fumes	M 35	50	
	or severe freezing whilst wet, or In contact			
	with or buried under aggressive sub-soil or			
	ground water			
	PL			
Extreme	Members in tidal zone, or Members in direct	M 40	75	
	contact with liquid/solid aggressive chemicals			

1. Compressive Strength of Concrete:

- > Compressive strength of concrete is measured by standard tests on concrete cube or cylinder specimen.
- > The grade of concrete is designated in terms of M10, M15, M20, M25, etc., where 'M' denotes 'mix' and 10, 15, 20, 25 etc. denotes the characteristic compressive strength OR characteristic strength of the mix at 28 days expressed in N/mm².
- > Characteristic strength is defined as the strength of material below which not more than 5% of the test results are expected to fall.

e.g., let the characteristic compressive strength of concrete be M 20. This means, if we perform 100 tests on cube specimen, then 95 cubes or more will show their compressive strength more than 20 MPa. It is denoted by f_{ck}

Mean compressive strength (f_{cm}) at 28 days:

28-B/7, Jia Sarai, Near IIT, HauzKhas, New Delhi-110016. Ph. 011-26514888. www.engineersinstitute.com © 2017 ENGINEERS INSTITUTE OF INDIA® .All Rights Reserved www.sscje.com

$f_{cm} = f_{ck} \quad 1.65\sigma$

Where, $\sigma =$ standard deviation

When the 'standard test cubes' of 150mm size is used to find the 28 days compressive strength of concrete, it is referred as **cube strength** (f_c) of concrete. While in some countries (such as USA),'standard test cylinders' of 150mm diameter and 300mm high are used to find the compressive strength of concrete, and it is referred as **cylinder strength** (f_c) the cylinder strength is found to be invariably lower than the cube strength for the same grade of concrete.

> <u>Influence of size of Test Specimen</u>:

Compressive strength of concrete depends on height/width ratio and cross-sectional dimensions of the test specimen.

 \blacktriangleright A standard cylinder specimen size is: of 150mm in diameter and height/diameter =2.0

It height/diameter = 0.5, strength increases by 80% with diameter = 150mm

Similarly, if height/diameter = 2.0, with diameter = 900mm, strength decreases by 17%

End friction restrains the specimen from failure. In case of cube specimen, the end friction acts on the whole length, but in the case of cylinder, end friction acts only up to height of 0.85 times diameter of cylinder, so its compressive strength is lower

Cube (f_c) strength $\approx 1.25 \times \text{cylinder strength}(f_c)$

Where,
$$f_c' = 0.8 f_{ck}$$
; where f_{ck} is characteristic cube strength.

2. Modules of Elasticity and Poisson's ratio :

Types of Modulus:

1. Initial tangent modulus: Slope of stress strain curve at origin.

- This value is considered by IS 456
- 2. Tangent Modulus: Slope of tangent of any point on the curve.
- 3. Secant Modulus: Slope of line joining any point on curve to origin.
- 4. Long term modules of elasticity

Modulus of rupture
$$(f_{cr}) = \frac{M}{Z}$$

where, M = bending moment
Z = section modulus

$$f_{cr} = 0.7 \sqrt{f_{ck}}$$

5. Splitting Tensile Strength :

Figure: Cylinder splitting test for tensile strength

- Cylinder splitting test is performed to find splitting tensile strength of concrete In this test, a standard plain concrete cylinder (of 150mm diameter and 300mm height) is loaded in compression on its side along a diametric plane and failure occurs by the splitting of the cylinder along the loaded plane.
- Splitting tensile strength .:. applied l Where P = MaximumL = Length $f_{ct} \approx 0.6 f_{ct}$ Generally, 6. Shrinkage: Shrinkage is the time dependent deformation, genera compressive i nature \geq The factors on which the total shrinkage of concrete depends \triangleright (*i*) Constituents of concrete (*ii*) Size of member (iii) Environmental condition
- The total shrinkage, however, is mostly influenced by the total amount of water present in the concrete at the time of mixing for a given humidity and temperature.

The approximate value of total shrinkage strain for design is taken as 0.0003 in the absence of test data.

7. Creep:

time since application of compressive stress

Figure: Typical strain-time curve for concrete in uniaxial compression

It is also a time dependent deformation of concrete usually under compressive stress. Factors affecting creep of concrete is:

- Properties of concrete
- ➢ W/C ratio
- Age of concrete at first loading
- Magnitude of stress and its duration
- Surface volume ratio of member

Creep of concrete results in following detrimental results in reinforced concrete structure:

- (i) Increased deflection of beams and slabs
- (ii) Increased deflection of slender columns
- (iii) Loss of pre-stress in pre-stressed concrete

Creep coeficient =
$$\theta = \frac{\varepsilon_{cr}}{\varepsilon_c}$$

Where, \mathcal{E}_{cr} = short term strain at the age of loading at a stress value of 'f_c'.

 \mathcal{E}_{cr} =Ultimate creep strain

Age of loading	Creep coefficient (")
7 Days	2.2
28 Days	1.6
1 year	1.1

28-B/7, Jia Sarai, Near IIT, HauzKhas, New Delhi-110016. Ph. 011-26514888. <u>www.engineersinstitute.com</u> © 2017 ENGINEERS INSTITUTE OF INDIA[®] .All Rights Reserved <u>www.sscje.com</u> Also, total strain, $\varepsilon = \varepsilon_{cr} + \varepsilon_c$

Effective Modulus of concrete (E_{ce}):Long term modulus of elasticity (E_{ce}),

$$E_{ce} = \frac{E_c}{1+\theta}$$
 Where, E_c = Short term elastic Modulus

Coefficient of thermal expansion:

The co-efficient of thermal expansion depends on nature of cement, aggregate, the relative humidity and the size of section.

Stress-strain curve for concrete:

Figure: Typical stress-strain curves of concrete in compression

The curves are approximately linear in the very initial phase of loading and the non-linearity begins to gain significant when the stress level exceeds about one-third to one-half of the maximum

The maximum stress is reached at a strain approximately equal to 0.002 and beyond this point, an increase in strain is accompanied by a decrease in stress.

The higher the concrete grade, the steeper is the initial portion of stress-strain curve, the sharper the peak of the curve and a lesser the failure strain.

For low-strength grade, the curve has a relatively flat top and a high failure strain.

At a stress- level about 70-90% of the maximum stress internal cracks are initiated in the mortar throughout the concrete mass, roughly parallel to the direction the applied loading.

28-B/7, Jia Sarai, Near IIT, HauzKhas, New Delhi-110016. Ph. 011-26514888. <u>www.engineersinstitute.com</u> © 2017 ENGINEERS INSTITUTE OF INDIA[®] .All Rights Reserved <u>www.sscje.com</u>

Permissible stresses in concrete

As per IS: 456-2000

1. Direct tensile stress:

Table : Permissible Direct Tensile Stress

Grade of concrete	M 10	M 15	M 20	M 25	M 30	M 35	M 40
Tensile stress N/mm ²	1.2	2.0	2.8	3.2	3.6	4.0	4.4

2. Compressive stress and bond stress:

Table: Permissible Stresses in Concrete (IS: 456-2000)

Grade of concrete	Permissible stress in	compression (N/mm ²)	Permissible stress in Bond		
	Bending (σ_{cbc}) Direct (σ_{cc})		(Average) for plain bars in tention		
			$(N/mm^2) \tau_{bd}$		
M 10	3.0	2.5	_		
M 15	5.0	4.0	0.6		
M 20	7.0	5.0	0.8		
M 25	8.5	16.0	0.9		
M 30	10.0	8.0	1.0		
M 35	11.5	9.0	1.1		
M 40	13.0	10.0	1.2		
M 45	14.5	11.0	1.3		
M 50	16.0	12.0	1.4		

3. Shear stress:

Table: Permissible Shear Stress In concrete (IS : 456-2000)

$\frac{100A_s}{bd}$	Permissible shear stress in concrete \ddagger_c , N/mm ² for grades of concrete						
Du	M 15	M 20	M 20 M 25		M 35	M 40	
						and above	
≤ 0.15	0.18	0.18	0.19	0.20	0.20	0.20	
0.25	0.22	0.22	0.23	0.23	0.23	0.23	
0.50	0.29	0.30	0.31	0.31	0.31	0.32	
0.75	0.34	0.35	0.36	0.37	0.37	0.38	
1.00	0.37	0.39	0.40	0.41	0.42	0.42	
1.25	0.40	0.42	0.44	0.45	0.45	0.46	
1.50	0.42	0.45	0.46	0.48	0.49	0.49	
1.75	0.44	0.47	0.49	0.50	0.52	0.52	
2.00	0.44	0.49	0.51	0.53	0.54	0.55	
2.25	0.44	0.51	0.53	0.55	0.56	0.57	
2.50	0.44	0.51	0.55	0.57	0.58	0.60	
2.75	0.44	0.51	0.56	0.58	0.60	0.62	
3.00 and above	0.44	0.51	0.57	0.60	0.62	0.63	

4. Modular ratio:

Modular ratio, m = $3\sigma_{chc}$

(value considered by IS code)

Where, σ_{cbc} = Permissible compressive stress due to bending in concrete (N/mm²)

Note: This value partially takes into account long term effect such as creep.

280

This is the ratio of young modulus of steel and modulus of elasticity of concrete. \triangleright

Table : Modular Ratio									
Grade of concrete	Grade of concrete M 10 M 15 M 20 M 25 M 30 M 35 M 40								
Modular ration m	31	19	13	11	9	8	7		
	(31.11)	(18.67)	(13.33)	(10.98)	(9.33)	(8.11)	(7.18)		

5. Increase of permissible stress:

Due to wind (or earthquake) and temperature effects, the above stresses (Direct tensile stress

increased by $33\frac{1}{2}\%$) compressive stress, bond stress, and she

> Wind and seismic forces are not considered to act simultaneous

To buy Complete Course Materials

Contact: 9990657855, 9278800100

Email : eiidelhi@gmail.com

Website : www.sscje.com

Classroom Coaching Program

Postal Coaching Program

Online Test Series